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ABSTRACT==We describe a new effort to enhance climate forecast relevance and usability
through the development of a system for evaluating and displayinimesdubseasonal to

seasonal (S2S).climate forecasts on a watershed ¥éatler managers may not use clima

forecass to.their full potential due tperceivedow skill, mismatched spatial and temporal
resolutionsy.ordack of knowledge or tedo ingestlata Most forecasts are disseminated as
largedomain'maps or gridded datasets and may be systematieaibdlyelative to watershed
climatologes..Forecasts presented on a watershed scale allow water managers to view forecasts

for thear specific basins, thereby increasing the usability arevagice of climate forecast his
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paper describethe formulationof S2Sclimateforecast products based the Climate Forecast
Systemversion 2 (CFSv2) and the North American Multi-model Ensemble (NMM&ecast
products include biveekly CFSv2forecastsand monthly and seasodMIME forecasts
Precipitation andemperature forecastése aggregated spatially taJSGSHUC-4 watershed
scale. Forecast verification reveals appreciakik in the first two biweekly periods (weeks 1-2
and 2-3) frem CFSv2, anukableskill in NMME month 1 forecast with varying skilklt longer
lead times‘dependent on the season. Application of a bias-correction technique (quantile
mapping) ‘eliminates forecast bias in the CFSv2 reforecasts, without addirigaighyi to

correlation skill)

(KEYWORDS:watershed managemegeospatiabnalysis subseasonal to seasonealimate
forecastsCFSv2 NMME; precipitation temperaturg
INTRODUCTION & BACKGROUND

Hydrologists and water managers make many operational decisions oseasohal to
seasonal (§2S) tinsxale, but undeutilize climate prediction to inform decision making from a
guantitative standpoint. Surveys indicate that water managers are reluctantlimatse
forecast due to perceived poor reliability of forecasts, mismatched tenopsyatiakcale,
institutionalreasons such as traditional reliance on built infrastructure, maganior regulatory
restraints, and risk aversig@allahanret al., 1999; Krchhoffet al., 2013; Rayneet al., 2005;
White et al\, 2017). Water managers may be unaware of sources of seasonal climate forecasts or
lack the skill'set and resources to ingest forecasts in a usable format, especially managers at
smaller utilities(Bolsonet al., 2013) Issues presented in these academic surveys can be
addressed through a closer relationship between forecast producer and ussgedncrea
institutional flexibility, anddemonstration of effective climate forecast skill and(xking and
Lemos, 2011; Feldman and Ingram, 2009; Paghab, 2001).

Numerous water management shertn and mieterm decsions are made on the S2S
time scale_including reservoir operations, water allocation, flood control, hydrogmmeration,
water treatment, and-4stream supported releag@olsonet al., 2013). Decisions depend
largely on streamflow forecasts, many of which are provided by the National Weather Service
River Forecasting Centers (RFCs) and National Resource Conservation Service (NRCS) in the

United States (US)T. Pagano et al., 2014). In the Colorado River Basin, amasaged by the
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Bureau of Reclamation, streamflow forecasts produced by the Colorado B&(CBRFC)

are used as inputs to operations and planning models which are used for decision making and
risk assessment of potential shortage or surplus basin condBi@tken, 2011) These

streamflow forecasts are not informed by climatedasts, even though recent work shows
benefits(Lehner et al. 2017)Raff et al(2013)identified enhancements to climate forecasts to
meet the needs of water resource managers in the Bureau of Reclamation amaylC®#Aos of
Engineersiin‘a‘report documenting sherth water management decisions. Water managers
interviewed'in‘the report emphasized the need for better understanding ofltaedskdliability

of climateforecast products, easily accessible products on differeatstales, and products
presented.in asformat easily accessible by operators.

Recently, dynamical climate forecasts generated using initialized global climate models
(GCMs) have shown skill improvements at the S2S Soase. One of these dynamical models,
the fully coupled atmospherecearland model Climate Forecast System version 2 (CFSv2),
which is run at the National Centers for Environmental Prediction (NCEP), deatesstkill in
projectingclimate variables at various leads and seasons over dredW8proves upon its
predecessor CFS\($ahaet al., 2014; Tiaret al., 2017; Yuaret al., 2011). Multi-model climate
forecast ensembles have also demonstrated improved skill over single (Bed&kset al.,

2014; Doblaskeyest al., 2005; Hagedoret al., 2005). The North American Multi-model
Ensemble (NMME) is an operational seasonal climate forecast system that includes ensemble
forecasts (for climate and land surface variables) from seven GCMs deadirore skillful
seasonal climate predictions than from any individual GCM (Becker and van den Dool, 2016;
Kirtman et al:»2014; Slateet al., 2016).

These climate model forecasts and verifications are normally presented at a system grid
resolution_or on North Americanide maps, or for all forecast initializations and lead times,
rather than patrticular seasons that are not easily related to local watershed scales. From a water
management perspective, haweg climate forecast utility is highly specific to location, time of
year, and predictand (Woatlal., 2016). There is a gap between the type of verification, data,
and productidiagnostics provided by forecast production centers and the skill irdormatt
readily interpretable and usable by the water commWiyod and Werner, 2011).

A number of the studies referenced above have explored S2S climate foregadsutskill

more can be done to support water managers in incorporating climate torettadecision

This article is protected by copyright. All rights reserved



making. Some studies have attempted to address these issues by presenting seasonal climate
forecasts on a different spatial scale than the typical gridded scale and by displdlyimgtaks
that are useful to water managers. Hartmann €@02) explored a framework for evaluating
seasonal temperature and precipitation projection performance with metrics more easily
digestible by.users. The metrics wergplihyed on the 344 Climate Divisions specified by
NOAA'’s Climate Prediction Center (CPC). Although this spatial scalebeauseful, the
Climate"Divisions are not, by design, aligned with hydrologic boundaries tlydbenralevant
for areas of'water managresponsibility. More recently, Bolinger et al. (2017) explored the use
of a webbased tool to provide monthly updated water-level projections informed by NMME
forecasts in the, Great Lakes region. The tool allows users to look at individuaENividel
results and+prebabilities of hydrologic variables for specific regiongptesents an example of
a regional water group processing climate outlooks onto spatial scalesre$intvhich
underscores the need to develop a centralized, nationwide system to achieveysatslar

With this motivation in mind, we present work to address some of the hurdles
confronting=the:widespread use of S2S climate predictions in water managemeattiapisli
and to bridgethe gap for potential stakeholders by enhancing the quality, ggeaifid
accessibihty of S2S predictions. To make S2S prediction more usable, this digjectimate
forecasts.with users spatime needs, present data in rgale in user friendly formats (such as
CSV files by watershed area), remove systematic climatology biases in forecast products, a
produce verification information that is relevant to water sector users.

Thisspaper describes a new rale experimental effotb develop and demonstrate
climate forecasts tailored to water managers by presentingmeaforecasts and verification on
a watershed scale over the conterminous United States (CONUS) domain. The effort contributes
to a sequence of milestones required to transition research toward implementatiagency
operational center such as CPC. For prototyping and demonstration purposes, tthadsifis
theUnited _States Geological Survey (USGS) hydrologic unit édo@¢UC-4) delineation, which
includes of.202 watersheds, which is a suitable spatial scale to show meaninghilityana
climate forecasts, given the-derrelation length scales of common climate variables. In Section
2, we describe reforecast and reale CFSv2 and NMME forecasts, afwicing datasets. Data
processing, verification, and basic bias-correction methodologies for pagoipiand

temperature reforecasts atviseekly, monthly, and seasonal time steps are presented in Section
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3. Results from watershestale verification i evaluated in Section 4, followed by a discussion
of water sector responses to the new products and possible improvements to the SB8dvater

climate forecasting system in Section 5.

DATA SOURCES AND PROCESSING

CFSv2 Climate Forecasts

Thesleading operational S2S climate forecast dataset in the US is generated by CFSv2, a
fully coupledsatmosphereeeanland operational modéSahaet al., 2014). CFSv2 forecasts of
temperature and precipitation rate are supported by a separase®@@ $eforecast dataset,
which has a 100 km (0.93 degree) grid resolution at a 6-hour time step from 1999 through 2010.
The reforeeasts weinitialized each day at four synoptic times: 0000 UTC, 0006 UTC, 0012
UTC, and 0018 ,UTC. The 0000 UTC forecast extends to the end of a full season (end of the
fourth month), while the 0006, 0012, and 0018 UTC forecasts extend for 45 days. Less frequent
CFSv2 reforecasts, not used in this work, extend to 9 months lead time.

For this.work, the raw CFSv2 temperature and precipitation reforecasts vpeogected
from a native.Gaussian grid to a 1/2kbgree grid, temporally averaged to a daily time stegp, an
areally averaged to USGS HWCspatial units through spatially conservative remappifigure
1 displays.the’202 HUC-4 watersheds in the CONUS duoniaaily ensemble means were
calculated for CFSv2 reforecasts and were temporally averagegavieekly time periods (e.g.
1-2 week,2-3 week, 3-4 week) to support a skill analysis on theeagwonal scale.
Climatologies:for each watershed, lead, aag of year (DOY) are based on ad&y window
(+/- 7 daysifrom forecasted date). CFSv2 data were obtained online from the NOAA Nationa
Center for’Environmental Information.

Reattime CFSv2 forecast are initialized each day at the four synoptic timas, but
contrast to the retrospective runs, each initialization prodocegnsemble members for a total
of 16 forecasts each day of various lengths: four extend out to 9 months, three to 1 season, and
nine to 45 days. The CFSv2 operational 16 member ensemble is downloaded each day and

processedssimilarly to the reforecasts.

NMME Climate Forecasts
The NMME Phase 2 is a combination of seven global climate models which predict

precipitation and temperature (among other variables) at a monthly timestepds up to 7
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months(Kirtman et al., 2014) Reforecasts are alatle for 1982 to 2010 and retitre model
forecasts are available for 2011 to present. The models included in NMMEmanearized in
Table 1. For more information about each mad®&MME, seeKirtman et al. (2014) oBlater
et al.(2016), but note that the models included in the NMME have changed over time.

[INSERT TABLE 1 HERE]

Raw temperature and precipitation reforecasts apeajected from a 1-degree grid onto
a 1/2th-degree grid and spatially averaged to HUC-4 spatial units using thensimod as
CFSv2 The NMMEforecast ensemble mean, which is used in calculating several of the
evaluation metricss calculated by equally weighting each model’'s ensemble avefage.
seasonal forecast is calculated by temporally averaging the first three months for the flmrecast
each model€limatologies are then established for each NMME model, watershed, and
forecasteds-month or seasdReattime NMME forecasts are updated monthly by the 8th day of
each month. The ensembles for each of the 7 models are downloaded and processeshtmwater
scale monthly. Reforecasts were downloaded fitmerClimate Prediction Center’s website and

reattime forecasts are downloaded for the IRI Data Library.

NLDAS Climate Observations

Theobservationatlata for this studgre derivedrom Phase 2 of the North American
Land Data Assimilation System (NLDAXia et al, 2012).NLDAS data areavailable at 1/8t-
degree gridispacingom 1979 tathepresent at an hourly temporal resoluti@imilar to the
CFSv2 reforecasts, NLDA& ecipitation and temperature data were spatially and temporally
aggregatedto'a daitime step on 4/2th-degree grid (common to hatatasets) before further
aggregation to the suteasonal HUE spaceime resolutiorto match CFSv2 and NMME time
scales The choice to move to common grid spacing was for ease of analysis and to rdduce dis
space usedsduring data processiNg.DAS data were obtainefilom NASA’s Earth Science

Data Systems«Prograwebsites

METHODS
Post-processing of Climate Forecasts to Reduce Systematic Biases
Raw GCM forecasts require pgatocessing due teystematidiases, unreliable

ensemble spread, and foresastt being skillful. Pogtrocessing can take the form of statistical
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or downscaling to improve the raw output of GCMs. In this projaet, CFSv2 forecasts were
biascorrected using the Quantile Mapping (QM) method. QM removes systdiasibetween
the forecasted and observed climatologies, but does not further calibrate thet$a®oaprove
their skill. QM is a general method thes long been applied to weather forecéi3ésofsky
and Brier, 1968and later to climate forests(Wood et al., 2002)QM is an effective approach
to removing, bias, but does not addriEsecast deficiencies in attributes suchembility and
correlationskill(in some cases QM reduces the skill of the forec@kg.distinction between
biascorrection‘angrobabilisticforecast calibration is further described/ifood and Schaake
(2008)and Zhag et a[2017), and the effectiveness of QM for ppetcessing climate model
outputs forvarious applications, including extremes projection, is discussed in Nin(2éig),
Cannon etal. (201%nd Maraur(2013).

When applied to CFSv2, QM replaces the forecast value with a value from the observed
climatology (NLDAS) that has the same quantile. This is done by estimating a pair of
cumulative distribution functions (CDFs) for the CFSefborecasts and NLDAS data for each
variable, leadywatershed, and tistale(climatologies based on 15-day window of +/- 7 days
from forecast'date) When forecasted values lie outside the quantile range, the two closest
guantilestare used to linearly extrapolate the new value. While QM corrects systematic biases in
the first and"second moments of the climate forecast distribution, concerns havaidezemr
various studies about its ability to preserve the extreme indices in the obsetnbdtdis and
to preserve future trends, and it also does not guarantee that biases witlibatet for
durations pot'explicitly addressed in the CDF mapping. Nonetheless, it serivas aélst step

to addressings-major biastated deficiencies in climate model foreaastputs.

Production of.Real -time Web-based 2S Climate Outlooks

After'spatial remapping and bias correction, prototype S2S climate data greduct
forecasts and associated skill analysase operationally disseminated by the Natidbahter
for Atmospheric Research (NCAR) on a public website to facilitate furtiogiupt development

through'interactions with water managers. The webisitp:{/hydro.rap.ucar.edu/s2svas built

in R using the R package Shiny, which supports the staging of websites that linkdlata
geospatial mapping. Climate products on the website include CFSv2-bageekby-climate
forecasts for HU&!} watersheds, and NMMBased monthly and seasonal prediction products.

The workflow for product generation is summarized in Figure 2 and described invleipre
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sections. Raw and bias-corrected CFSv2 products are updated daily on the site and NMME

products are updated once per month, when NMME forecast outputs are updated.

Forecast Verification

Theranomaly correlation coefficient (ACC) metric is widely used in the climate
prediction‘’community to measure the degree of association between the forecast mean and the
observations. The square of th€C represents the fraction of climatological variance
(uncertainty) explained by the forecast, where a score of 1 indicatesgratides perfect
information“and a score of zero means the forecast contains no information. For thegofpos
prototyping,‘the ACC was used here to quantify the skill of the forecasts by calculating the
correlation between the reforecasts and observations (or forcing data), as (llopky and
Epstein, 1989):

YXY-YX XXy
ACC = z 1
YnEx2—(E20)2-/nYy* - y)? (1)

wherex is CESv2 or NMME reforecast anomalies for each watershed andfléamiperature or
precipitationandy is NLDAS anomalies for the same variabhatershed and lead,is the
number of forecasts, aCC is the anomaly correlation coefficient for the reforecasts and
forcing data., Anomalies for CFSv2, NMME, and NLDAS for S2S tateles were calculated
using thesclimatologies described in the previous section.

We also calculate other standard deternimisrecast quality metrics that are familiar to
water managers, including forecast bias (he.mean error as a percent of observations for
precipitation and as a difference from observations for temperature), and melateadsor,
and we plantto agss probabilistic metrics in the future. Forecast ‘skill’ is a Aadited
concept, generally reflecting the quality of the forecast as describeatibys dimensions of
forecast performance, such as reliability, discrimination, resolution, ex@racy, correlation

and bias. Jker.the demonstration purposes of this paper, we discuss only the ACC and bias.

RESULTS
Thewraw and biasorrected reatime climateforecast products being staged on the
website are complemented by maps showing sielrics for different products, seasons and
lead times, which we summarize here. The anomaly correlation coefficient for CRB8g2kby

forecastsKigure3), shows that temperature has high skill for the first twavdxekly periods,
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especially for weeks-2. The skill tends to be lower in the western half of the CONUS domain.
By weeks 34, there are areas with skikceeding a ‘usability’ thresholged by the CPGf

ACC = 0.3 along the Atlantic and Gulf coasts but the rest of the domain has very low to no skill
(O’Lenic et al., 2008). Precipitation forecasts have high skill (reaching values of 0.72) in the
first bi-weekly,period, especially on the west coast. Skill drops off significanthydeks 2-3,
especially'in the central and eastern CONUS domain, and by w&ekbeforecast has

negligible 'skill:

Theclimateforecast skill varies considerably depending on the season. Fidepecis
CFSv2 weeks 2-3 anomaly correlation of precipitation forecast for four seadomsve$t coast,
especially watersheds in southern Arizona, and the Midwestern US havghasttskill inthe
DecembetFebruary DJF season In March-May (MAM) seasonthe skill is not as high, but the
spatial pattern doesn’t vary significantly compared to DJF. During theAwmest JJA)
period, the pattern shifts and the watersheds in Nevada and Idaho have the hidjnésteskile
remainder.of the CONUS domain has lowerthia SeptembeNovember SON) period the
region of highest skill shifts to the southeastern US. The mdfigune4 display different
patterns oferecastskill compared to the corresponding mag-igure3. This seasonal
dependence on skill over the CONUS domain is apparent for all other leads and var@bles
shown here).

NMME monthly anomaly correlation faneantemperature and precipitation are shown
in Figure5., There are three leads shown in the figure which are labeled as months. Month 1
refers to the*forecast initialization month, or a lead 0, e.g. for a January NbteEast, Month
1 would referto January, Month 2 would be February, and Month 3 would be Mssdias
been found by other authors (Becker and van den Dool, 2016; &later2016) temperature
forecasts exhibit skill in month 1, especially in the north central US, but tHislsiils off
significantly.in.months 2 and 3. Precipitation has some skill in watershed withforG@iand
the south east,/but other areas of CONUS display low skill. The anomaly correlation of
precipitationforecasts in months 2 and 3 are much lower. These trends in skilhfye hig
seasonally"dependent; therefore, there may be skill in months 2 and 3 for spasditssgot
observed in the annual figures.

A basic skill assessment is pemted, but additional analysis into the sources of

predictability were not a component of this work. Many other studies have focused of
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predictability with CFSv2 and NMME. Sources of predictability in the S2S timescale is
dependent on the season and lead. Infanti and Kirkman (2016) explored the relationship between
ENSO and NMME forecasts of North American precipitation and temperature forecasts.
Dirmeyer and Halder (2016) evaluated the sensitivity, variability, and meohtagd surface

states in CESvand found that soil moisture memory was important in improving forecast sKill
during spring and summer.

Quantile'mapping was used to remove bias from CFSv2 forecasts. The bias prior to
guantile mapping is shown Figure6. Temperature bias is positive, meaning CFSv2 is over-
forecasting temperature compared to NLDAe warm bias in temperature appears to grow
with lead time=Climate model forecasts are known to drift (i.e. climatologies changing with lead
time). To address any drift in bias, the quantile mapping adjustment is perfaraddrection of
lead time. Precipitation exhibits the opposite trend and is mainly ufatecasted, except in a
couple watersheds on the west coast and Texas. The spatial patterns in bias do neatary g
between time periodgrigure? illustratesthe resui of bias-correction and showlsat quantile
mapping suceessfully removed bias from the CFSv2 reforecasts.

Biascorrection removes the average bias but does not necessarbtywarthe forecast
skill. While,some studies have shown that bias-correction can slightly degradeticoriskdl
(e.g. Mendozat al., 2017), here the sample of forecasts used in training the bias-correction does
not have this impact (based on cross-validation; results not shéwfigure8, the week2-3
temperature forecast from raw CFSv2 is compared to the QM approach for the Rle-Gra
Amistad watershed in southern Texas. The top pair of 1:1 plots show the modslexd ve
observed forecasts for the raw and QM methods. The raw CFSv2 forecast sstewssy bias
as it slightly undeforecasts temperature. The QM approach illustrates the removal of bias as
the forecast shift higher and overlaps the 1:1 line. Thislsanbe seen in the tinseries plot of
temperature forecasts and observations for 2000. The QM forecast shifts thstfopetowards
the observed temperature throughout the entire year. Other watershedswsifenwesults of
removal of systematicias where present.

In addition to the issues with capturing extreme events, QM can alter the chodele
covariance of temperature and precipitation by QM treating them independentlgwnscaling
of daily weather data, it is common (and important) togrkesinterrelationships between

precipitation, temperature, and other fields because there are strongbleseglationships
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linked by synoptic atmospheric dynamics. For instance, wet/precipitating days typically have a
compressed temperature range usrdear days. At the sigeasonal timescale, this covariance
is typically weaker. We nonetheless assess the impact of QM orcoroskations between
precipitation and temperature for sséasonal biveekly CFSv2 predictands for all of the
CONUS HUE4s, in comparison to observations from NLDAS. We find that QM the impact
varies by season and lead time. Figure 9 shows thesecomsktions for NLDAS, and CFSv2
forecasts before and after QM, with the H4€in each subplot sorted from low to highues

for observedcorrelation (with samples sizes for each statistic betwaed X of ~360). QM
does not significantly affect cross-correlation for January or July fasedag has a larger
impact, and one that brings cross-correlations of the CkgRasts into closer agreement with
observations for the April and October forecasts. The disagreement betweeR3a2 and
NLDAS grows slightly with lead time. These results suggest that treating temperature and
precipitation independently may be acceptable when using QM at ttse=asbral timescale,
and may even improve cross-correlations where the model is biased relative tethatms.

All results shown above are displayed on the S2S Climate Outlooks for Watersleds we
based tool* The results from the verification assessment on an annual and seasaral basis
displayedtin, tabs for each climate model. Reak climateforecasts are available as shown in
Figure 10-The tool allows the user to choose the lead, variable, and forecast displayed. They
can hover over watersheds to view the forecasted anomaly and choose to view théaeaw or
biascorrected output. This allows users to view their specific watersheds forecast as well as

verifications

DISCUSSION AND CONCLUSION
The new wateshed-scale S2S Climate Outlooks for Watersheds web-based tool offers a
new medium for water managers to use climate products. Many academis ahdlieports
from within the iIndustry indicate that S2S forecasts are obtained and assesisativglyaby
water managers, adding to situational awareness, but are less widely used quantitatigly, as d
streams input to water management decision support tools and models. Water nuiteagers
perceived poor forecast reliability and skill, mismatched temmorgpatial scales, and lack of

resources to ingest forecasts (Bolsbal., 2013; Rayneet al., 2005).
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Through this new watershextale climate product, we aim to overcome several of these
hurdles. The skill and accuracy of climate model forecasts for individualsiatis has been
explored using an initial, small set of forecast metrics, and these @®ufisesented in an
accessible format. Water managers can use theébasdd tool to view redime forecasts of
precipitation.and temperature at an®@ekly, monthly, or seasonal outlook, and work is
underway to provide data access to the watershedaiige@nd hindcasts) in accessible formats
(both text'and"NetCDF). These products aim to bridge the gap of accessibitigy, apd
temporal scale;"and perception of unusable skill by allowing water manageok &t the
climateforecast for their ragn as well as the skill of the forecast itself based on an analysis of
the model reforecast.

Wepresented the new S2S Climate Outlooks teethto water managers at agencies
across the US.\The site was presented to Southern Nevada Water Authority X BNG&idy
2017. SNWAIs a wholesalevater provider irthe Las Vegas regiomho use reservoir levels at
Lake Powell and Lake Mead to plan for their future water management needs. They were
interesteddnghew this product could be used to better inforrmsflicea forecasts in the
Colorado RiverBasin.

Reservoir operators in Reclamation found this tool informative and useful. Opera&tors us
forecasts.obtreamflowquantity and timing to project operations of their reservoirs, and
operators in the western US noted stated that this tool could be useful for timmgirese
releasedased on projected temperatures duringstt@vmeltrunoff season Examples of this
operation include the Upper Colorado River basinere releases from Flaming Gorge
Reservoir arestimed to meet the natural peak in runoff from the Yampa River. a&un@eand
precipitation S2S forecasts could also be useful for determining reservoir releases when
attempting taneetstorageargets in arly summer when reservoirs are being fill&kservoir
system operators also, however, expressed an interest in a wider variegcastf@roducts,
including timeseries of past forecasts showing their evolution and agreement with ologexvati
and foecasts'of full precipitation and temperature fields rather than forecast anomalies. A
Californiabased watershed manager requested the addition finer scale waterskeovioredor
the climate forecasts.

This work would benefit from a structured analysis of user utility but this focusetas

part of this work, which was to demonstrate the concept of watebstssd climate forecast
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products. Formal surveys could be conducted with a diverse audiencdiofgmabprivate
stakeholders to provide feedback and inform future tool development.

The S2S Climate Outlooks webol presents a skill assessment of raw CFSv2 forecasts.
We show that CFSv2 temperature reforecasts exhibit signitoarglationskill in the first two
bi-weekly periods, especially in weeks 1while moderate in weeks2, followed by limited
skill in weeks 34. CFSv2 precipitation forecast show skill over the CONUS domain in weeks 1-
2 and régionally in weeks 2-3. In addition to being lead dependent, skill varies seag®nally
exemplified‘inhe analysis CFSv2 precipitation reforecast of weeBs RMMME reforecasts
displays skill in/Month 1, especially when predicting temperature. Months 2 and 3 show lower
skill, espegially,for precipitation.

In general, one expects that as skill in a fastémproves, the forecast has greater utility,
but the actual utility for decision making varies greatly among users due to a range of factors
These include the resilience of their system to forecast busts, the characteristicgpehtity
functionsfor forecast errors, their sensitivity to forecast accuracy in different parts of the forecas
distributiops(evg. high or low flows), among others. Thus we can only suggest utility drase
climate forecast skill. For example, a water manager on theca@st can have reasonable
confidence.in the spring (MAM) 2-3 week CFSv2 precipitation forecast, but a mateager in
Upper Coloerado should not have high confidence in the spring 2-3 week precipitation forecast
Similarly, winter (DJF) NMME forecasts ®flonth 2 temperature for the Pacific Northwest are
skillful, but.show limited skill during the summer.

Thesraw,model forecasts also contain substantial biases, and we find that idetiappl
of quantile'mapping to post-process tDESv2 successfully remed bias from CFSv2 bi-
weekly reforecasts for precipitation and temperature. Quantile mapping removes systematic bias
between the forecasts and observations but does not improver ski#r forecast reliability
directly as.a forecashlibration methodnight To improve the skill of thelimateforecasts,
further work is.underway to develop statistical pmsieessing procedures on a watershed by
watershed.scale that harness larger scale circulation patterns, variability and potential
predictability.

At present, this paper describes the first steps toward addressing hurdiésdpread
use of S2S prediction in water management applications. The S2S Climate Outlooks for

Watersheds tool presented here enhances the quality, specificity, and adyess8#IS climate
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prediction. With wider use of the web-based tool, we intend to improve the product based on

user feedback.
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TABLES

Table 1. North American Multimodel Ensemble (NMME) models

M odelAcr onym
CFSv2

NASA_GEOS5

CCsMm4

GFDL-CM2.1

GFDL_FLOR-CM2.5

CanCM3

CanCM4

Model Name
NOAA NCEP Climate Forecast Syste Saheet al., 2014

version 2

Reference

Goddard Earth Observing System Verniereset al., 2012;
Molod et al., 2012

Lawrenceet al., 2012

version 5
NCAR/University of Miami
Community Climate System Model

version 4

Geophysical Fluid Dynamics
Laboratory’s (GFDL’s) Climate Model
version 2.1

GFDL’s Climate Model version 2.5
[FLORa06 and FLORbO1]

Third Generation Canadian Coupled Merryfield et al., 2013
Global Climate Model

Fourth Generation Canadian Couplec Merryfield et al., 2013
Global Climate Model

Zhanget al., 2007

Vecchiet al., 2014

LIST OF FIGURES

Figure 1. United States Geological Survey hydrologic unit code 4 (HlY@atersheds over the

conterminous United States (CONUS) domain overlaid by state outlines.
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Figure 2. Summary of methods for processing of Climate Forecast version 2 (CFSv2) and

NMME data, and delivering them to an online dissemination platform.

Figure 3. CFSv2 anomaly correlation at Wweekly time step for temperature and prdeiion at
a'HUCG4 watershed scale.

Figure 4. Anemaly.correlation of CFSv2 2-3 week precipitation reforecast for four seasons

Season acronyms contain the first letter of each month included in the season.

Figure 5. NMME anomaly correlation of monthly time periods for temperature and prempitat
at a HUCG4 watershed scale.

Figure 6. Bias of raw CFSv2 temperature (degrees Centigrade) and precipitation rate (mm/d) for

each biweekly period.

Figure 7. Bias of quantile mapped (QM) CFSv2weekly forecasts of temperature (degrees
Centigrade) and precipitation rate (mm/d) over theldy period.

Figure 8..Comparison of Rio Grandémistad watershed-3 week temperature forecast from
CFSv2 and QM. The pair of figures top display the modeled vs. observed forecast for
thesfull time period (1999-2010). The time series plot on the bottom displays the
forecast br CFSv2 and QM in comparison to North American Land Data Assimilation
System (NLDAS) for 2000.

Figure 9. Thesbtweekly crosscorrelation of temperature (T) and precipitation (P) for NLDAS,
raw CFSv2, and QM CFSv2 for the forecast months January, April, July, and October.
The xaxis is the index of the HUC-4s in ascending order of NLDAS aroa®lation.

Figure 10. Sub-seasonal to seasonal (S2S) Climate Outlooks for Watersheds web-based tool

allows; users to look at specific watersheds forecasts and verification metrics.
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